27 research outputs found

    A simplified hydrokinetic model for a steady‐state microwave discharge sustained by traveling waves at atmospheric pressure conditions

    Get PDF
    The properties of a microwave‐induced argon plasma produced by traveling surface wave at atmospheric pressure are investigated theoretically. A hydrokinetic model is elaborated to obtain the nonequilibrium one‐dimensional profiles of electron temperature Te (average electron energy), electron density ne, and the first excited state population density n4s, along the axis of a steady‐state discharge. A three‐level atomic structure is assumed for the argon atom. A particle balance is included through the continuity equations for ne and n4s. These equations are coupled with an energy balance equation for the electrons. The effects of different parameters on the properties of the argon discharge are investigated: discharge tube radius, gas flow rate, resonant radiation‐escape factor, and neutral gas temperature.Ministerio de Educación y Ciencia. Gobierno de España-PB91- 0847 y PB94-145

    Isotope Labelling for Reaction Mechanism Analysis in DBD Plasma Processes

    Get PDF
    Dielectric barrier discharge (DBD) plasmas and plasma catalysis are becoming an alternative procedure to activate various gas phase reactions. A low-temperature and normal operating pressure are the main advantages of these processes, but a limited energy efficiency and little selectivity control hinder their practical implementation. In this work, we propose the use of isotope labelling to retrieve information about the intermediate reactions that may intervene during the DBD processes contributing to a decrease in their energy efficiency. The results are shown for the wet reforming reaction of methane, using D2O instead of H2O as reactant, and for the ammonia synthesis, using NH3/D2/N2 mixtures. In the two cases, it was found that a significant amount of outlet gas molecules, either reactants or products, have deuterium in their structure (e.g., HD for hydrogen, CDxHy for methane, or NDxHy for ammonia). From the analysis of the evolution of the labelled molecules as a function of power, useful information has been obtained about the exchange events of H by D atoms (or vice versa) between the plasma intermediate species. An evaluation of the number of these events revealed a significant progression with the plasma power, a tendency that is recognized to be detrimental for the energy efficiency of reactant to product transformation. The labelling technique is proposed as a useful approach for the analysis of plasma reaction mechanisms

    Colored semi-transparent Cu-Si oxide thin films prepared by magnetron sputtering

    Get PDF
    Colored semi-transparent Cu-Si oxide thin films have been prepared by reactive magnetron sputtering from a single cathode of copper-silicon composition. Thin films of different composition and optical response were obtained by changing process parameters like the relative amount of copper in the target and the O2/Ar mixture of the reactive plasma gas. The film characteristics were analyzed by several techniques. Their optical properties (refractive index, absorption coefficient, color) have been correlated with the process parameters used in the film preparation as well as with the film stoichiometry and chemistry.Ministerio de Ciencia e Innovación CEN-20072014, MAT2010-18447, MAT2010-21228, CSD2008–00023Junta de Andalucía P09-TEP5283, CTS-518

    Influence of the angular distribution function of incident particles on the microstructure and anomalous scaling behavior of thin films

    Get PDF
    The microstructure and the scaling properties of films grown by plasma enhanced chemical vapor deposition are reproduced with a discrete model that takes into account the angular distribution function of the particles and the lateral growth of the films. Both the experimental and simulated surfaces exhibit a granular microstructure and an anomalous scaling behavior characterized by values of the growth exponent β that vary with the scale of measurement. Depending on the angular distribution function used in the model, values of β ranging from 0.86 to 0.2 are obtained

    Scaling behavior and mechanism of formation of Si O2 thin films grown by plasma-enhanced chemical vapor deposition

    Get PDF
    This paper reports a study of the kinetic roughening of Si O2 thin films prepared by plasma-enhanced chemical vapor deposition (PECVD). Tetramethylsilane has been used as a precursor, and the synthesis has been carried out under remote and in-plasma configurations. The analysis of surface topography of the films by atomic force microscopy shows an anomalous scaling behavior that cannot be represented by the Family-Vicsec scaling relation of dynamic scaling theory. The application of different methods for obtaining the roughness exponent α yields different values of this exponent (α=0.7 for the height-height correlation function and α=1.3 for the power spectral density function for long deposition times) in all experimental conditions. Moreover, a strong variation of the α exponent with deposition time has been determined for the samples grown in remote mode. This correlates with the presence of a crossover region of the growth exponent β, which varies from a first value of 1.3 for low deposition times to another of 0.3 for longer deposition times. Such a variation is not found for the samples grown in the plasma, characterized by a β value of 0.28. The results obtained can be explained by the combined effect in the growth process of a low diffusivity of the physisorbed species along with the existence of nonlocal interactions due to shadowing effects. These two assumptions are in agreement with the empirical knowledge existing about the kinetics of the growth of Si O2 thin films by PECVD and establish a link between the scaling properties of the films with the surface chemistry during the film growth.Ministerio de Educación y Ciencia MAT2004-01558 y MAT2007-6576

    Relationship between scaling behavior and porosity of plasma-deposited TiO2 thin films

    Get PDF
    The growth of TiO2 thin films prepared by plasma enhanced chemical vapor deposition has been studied by analyzing their roughness with the concepts of the dynamic scaling theory. Differences in the growth and roughness exponents have been found depending on the composition of the plasma by using either O2 or mixtures Ar+ O2 as plasma gas and titanium isopropoxide as the precursor. The slope of the representations of the film roughness against the deposition time yielded values of the exponent β of 0.45 and 0.32 for, respectively, thin films prepared with plasmas of O2 or mixtures Ar+ O2. Meanwhile, values of the exponent α of 1.15 and 1.89/0.35 were deduced from the power spectral density representations for the films prepared under these two experimental conditions. These values are congruent with growth processes dominated, respectively, by shadowing or diffusion processes. A columnar microstructure was observed by scanning electron microscopy for the thin films prepared with pure oxygen. Meanwhile, homogeneous films were obtained with mixtures of Ar+ O2. The open porosity of the films was determined by measuring water adsorption-desorption isotherms with a quartz crystal monitor. This analysis showed that in the samples prepared with mixtures of Ar+ O2 the porosity consisted exclusively of micropores (d2 nm). It is concluded that the different growth mechanisms found by just changing the chemistry of the plasma are responsible for the quite distinct microstructures, porosities, and optical properties obtained for the films.Ministerio de Educación y Ciencia NAN2004-09317-C04-01 y MAT2007-6576

    Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    Get PDF
    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independently controlled. The result shows that it is possible to control the microstructure of oxide thin films deposited by room temperature plasma enhanced chemical vapor depositon (PECVD) by scarificial polymeric organic layers.Ministerio de Ciencia y Tecnología MAT2001-2820European Union ENV4-CT97-063

    Nanostructured Ti thin films by magnetron sputtering at oblique angles

    Get PDF
    The growth of Ti thin films by the magnetron sputtering technique at oblique angles and at room temperature is analysed from both experimental and theoretical points of view. Unlike other materials deposited in similar conditions, the nanostructure development of the Ti layers exhibits an anomalous behaviour when varying both the angle of incidence of the deposition flux and the deposition pressure. At low pressures, a sharp transition from compact to isolated, vertically aligned, nanocolumns is obtained when the angle of incidence surpasses a critical threshold. Remarkably, this transition also occurs when solely increasing the deposition pressure under certain conditions. By the characterization of the Ti layers, the realization of fundamental experiments and the use of a simple growth model, we demonstrate that surface mobilization processes associated to a highly directed momentum distribution and the relatively high kinetic energy of sputtered atoms are responsible for this behaviourJunta de Andalucía P12-FQM- 2265Ministerio de Ciencia e Innovación CSD2008- 00023, MAT2013-42900-P, MAT2013-40852-R, MAT2014-59772-C2-1, MAT2011- 2908

    Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range

    Get PDF
    In this article we present a new type of 1D nanostructures consisting of supported hollow ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs). The 3D reconstruction by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) electron tomography reveals that the Ag NPs are distributed along the hollow interior of the ZnO NRs. Supported and vertically aligned Ag-NPs@ZnO-NRs grow at low temperature (135 °C) by plasma enhanced chemical vapour deposition on heterostructured substrates fabricated by sputtered deposition of silver on flat surfaces of Si wafers, quartz slides or ITO. The growth mechanisms of these structures and their wetting behavior before and after visible light irradiation are critically discussed. The as prepared surfaces are superhydrophobic with water contact angles higher than 150°. These surfaces turn into superhydrophilic with water contact angles lower than 10° after prolonged irradiation under both visible and UV light. The evolution rate of the wetting angle and its dependence on the light characteristics are related to the nanostructure and the presence of silver embedded within the ZnO NRs. ÂEuropean Union NMP3-CT-2006- 032583Ministerio de Ciencia e Innovación MAT2010-21228, MAT2010-18447, CSD2008-00023Junta de Andalucía P09-TEP-5283, CTS-518

    Plasma-enhanced chemical vapor deposition of SiO2 from a Si(CH3)3Cl precursor and mixtures Ar/O2 as plasma gas

    Get PDF
    Silicon dioxide thin films have been prepared at room temperature by remote plasma-enhanced chemical vapor deposition in a downstream reactor by using Si(CH3)3Cl as a volatile precursor and a microwave electron cyclotron resonance external source. Experiments are done at constant pressure by changing the relative amount of Ar species R in the plasma gas. The aim was to obtain thin films with low density and, therefore, low refractive index. Characterization of the species of the plasma is carried out by optical emission spectroscopy. The changes of the plasma conditions are correlated with the growing rate and microstructure of the films, the latter determined by atomic force microscopy and infrared spectroscopy. It is found that the growing rate of the films decreases and their roughness increases as R increases. The optical properties of SiO2 thin films are analyzed by optical ellipsometry. A decrease in the refractive index is found for the films grown with high values of R. The possible routes for activation of the precursor and the formation of the SiO2 thin films are discussed.Ministerio de Ciencia y Tecnología MAT2001-2820European Union ERK6-CT-1999-0001
    corecore